Generalized polynomials and associated operational identities
نویسندگان
چکیده
منابع مشابه
Some symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials
In 2008, Liu and Wang established various symmetric identities for Bernoulli, Euler and Genocchi polynomials. In this paper, we extend these identities in a unified and generalized form to families of Hermite-Bernoulli, Euler and Genocchi polynomials. The procedure followed is that of generating functions. Some relevant connections of the general theory developed here with the results obtained ...
متن کاملGeneralized Bivariate Fibonacci-Like Polynomials and Some Identities
In [3], H. Belbachir and F. Bencherif generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. They prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations. [7], Mario Catalani define generalized bivariate polynomials, from which specifying initial conditi...
متن کاملSome Identities on the Generalized q-Bernoulli Numbers and Polynomials Associated with q-Volkenborn Integrals
Let p be a fixed prime number. Throughout this paper, Zp, Qp, C, and Cp will, respectively, denote the ring of p-adic rational integer, the field of p-adic rational numbers, the complex number field, and the completion of algebraic closure of Qp. Let N be the set of natural numbers and Z {0} ∪ N. Let νp be the normalized exponential valuation of Cp with |p|p p−νp p p−1. When one talks of q-exte...
متن کاملBinomial Identities Involving The Generalized Fibonacci Type Polynomials
We present some binomial identities for sums of the bivariate Fi-bonacci polynomials and for weighted sums of the usual Fibonacci polynomials with indices in arithmetic progression.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1999
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(99)00111-9